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The largest Lyapunov exponent of a system composed by a heavy impurity embedded in a chain of anhar-
monic nearest-neighbor Fermi-Pasta-Ulam oscillators is numerically computed for various values of the im-
purity massM. A crossover between weak and strong chaos is obtained at the same valueeT of the energy
densitye (energy per degree of freedom) for all the considered values of the impurity massM. The threshold
eT coincides with the value of the energy densitye at which a change of scaling of the relaxation time of the
momentum autocorrelation function of the impurity occurs and that was obtained in a previous work[M.
Romero-Bastida and E. Braun, Phys. Rev. E65, 036228(2002)]. The complete Lyapunov spectrum does not
depend significantly on the impurity massM. These results suggest that the impurity does not contribute
significantly to the dynamical instability(chaos) of the chain and can be considered as a probe for the dynamics
of the system to which the impurity is coupled. Finally, it is shown that the Kolmogorov-Sinai entropy of the
chain has a crossover from weak to strong chaos at the same value of the energy density as the crossover value
eT of largest Lyapunov exponent. Implications of this result are discussed.
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I. INTRODUCTION

During the past two decades or so, there has been growing
evidence of the connection between the underlying chaotic
microscopic dynamics of many-particle systems and its ob-
served macroscopic behavior. For example, the largest
Lyapunov exponent(LLE) l1, which measures the exponen-
tial rate of divergence of two originally close trajectories in
phase space, has been found to be an indicator(order param-
eter) of phase transitions[1–3]. Moreover, the largest
Lyapunov exponent has also been related to the transport
coefficients of fluid systems with continuous potentials
[4–6]. For some special cases, e.g., hard-sphere systems, the
theory of Lyapunov exponents is remarkably developed[7].
However, considering randomness and transport, in general,
as signatures of microscopic chaos raises subtle and funda-
mental issues in statistical physics that have to be carefully
discussed and investigated. For the case of Brownian motion
the analysis of simplified models such as a labeled(test)
particle immersed in a one-dimensional system of hard rods
[8] and an impurity in a harmonic crystal[9], has shown that
the motion of the tracer particle may be Brownian even when
the full dynamical system, particle plus fluid, is not chaotic.
These examples show that microscopic chaos is sufficient,
but not necessary to produce Brownian motion. The main
problem then is to prove beyond doubt if it is possible to
detect any particular feature of the microscopic dynamics,
either regular or chaotic, in the behavior of the tracer par-
ticle. Only then it would be possible to assess the relevance
of the microscopic dynamics on macroscopic behavior.

The Fermi-Pasta-Ulam(FPU) model, which is a one-
dimensional chain of nearest-neighbor anharmonic oscilla-

tors, is a system that has been extensively studied over the
past decades with relation to the problem of energy equipar-
tition. From the dynamical system’s perspective, it was the
starting point in the study of chaotic dynamics in many-
degrees-of-freedom systems(for a recent review, see Ref.
[10]). In particular, numerical simulations[11] revealed a
rich phase-space dynamics that is controlled by the energy
per degree of freedome;E/N. Two qualitatively different
regimes exist in the dynamical behavior of the system: it is
strongly chaotic and phase-space diffusion(to be referred
from now on as microscopic diffusion) is fast when the en-
ergy densitye exceeds a thresholdeT, whereas it is only
weakly chaotic(i.e., almost periodic) and microscopic diffu-
sion is slowed down when the energy density is below the
thresholdeT, which in Ref. [11] was called thestrong sto-
chasticity threshold(SST). The detection of this transition
between two different dynamical regimes is performed by
means of the LLEl1sed, which exhibits a change in its scal-
ing behavior precisely at the valueeT of the SST.

Recently it was shown that, if the FPU chain is coupled to
a heavy impurity, the latter performs Brownian motion[12].
This system, being one dimensional, can be much easily
studied than three-dimensional systems with continuous po-
tentials, and offers a convenient starting point for a system-
atic study of the relationship between the microscopic dy-
namics and the macroscopic, statistical behavior. In
particular, it is a suitable model to explore the possibility to
find some indication of the known microscopic dynamics in
the statistical behavior of the heavy impurity. The results of
the present work suggest that this is the case indeed. In Sec.
II we describe the model to be used. In Secs. III and IV we
report the results of the statistical and dynamical behavior of
the system, respectively. Section V is devoted to discuss the
relationship between the results found in the two previous
sections. In Sec. VI some conclusions are drawn.*Electronic address: rbm@xanum.uam.mx
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II. THE MODEL AND ITS NUMERICAL INVESTIGATION

In terms of dimensionless variables, the Hamiltonian of
the model considered in this work is

H = o
i=−N/2

N/2 F pi
2

2mi
+

1

2
sxi+1 − xid2 +

1

4
bsxi+1 − xid4G s1d

with mi =1 for i Þ0 and m0=M; periodic boundary condi-
tions are assumedsxsN/2d+1=x−N/2d. The model describes a
system of one-dimensionalN coupled nonlinear oscillators of
unit mass with nearest-neighbor interactions, displacements
hxij, momentahpij, and a central oscillatorsimpurityd of mass
M with displacementx0;X and momentump0; P. The
value b=0.1 was used in the computation of all the nu-
merical results hereafter reported. This model will be re-
ferred to as the modified FPUsMFPUd model.

As initial conditions we choose the equilibrium value of
the oscillators displacements, i.e.,xis0d=0 for i =
−N/2 ,¯ ,N/2. The momentahpis0dj were drawn from a
Maxwell-Boltzmann distribution at temperatureT consistent
with a given value of the energy densitye. It is known that
the dynamics of both the homogeneous(uniform mass,M
=1) FPU model[11] and the MFPU model[12] is strongly
chaotic for largee values, whereas their dynamics, for small
e values, corresponds to a chain of coupled harmonic oscil-
lators. Consequentlye was chosen in the range 0.01øe
ø100 with M =1,40,60,80, and100. Finally, the 2N first-
order Hamilton equations of motion were integrated using a
third-order bilateral symplectic algorithm[15], which is a
high-precision numerical scheme.

III. STATISTICAL BEHAVIOR OF THE HEAVY IMPURITY

Thermal equilibrium between the impurity and the FPU
chain with N=300 000 unit mass oscillators is attained
within the time interval oft=53105 natural time units. Af-
terwards the heavy impurity performs Brownian motion for
all e values studied[12]. The momentum autocorrelation
function (MACF) r0std;kPstdPs0dlt / kP2s0dlt of the heavy
impurity was obtained by computing the time averagesk¯lt

over a time interval oft=23105. For all e and M values
considered the exponential fit exps−t /td, wheret is the re-
laxation time of the MACF, is valid fort,50. Since the
magnitude ofr0std is negligible for t.50 in all cases, its
contribution was not considered in the computation oft.

Figure 1 shows a graph of the relaxation timet versus the
energy densitye in log-log scale for all the consideredM
values, ase goes from the regular to the chaotic regime. We
observe that the data points are separated into two different
and well-defined regions, depending on thee value. In all
cases the dependence oft on the energy density is weak
whene,1. On the contrary, wheneù1, t decreases rapidly
as e increases. In each of these regimest has a power-law
scalingtMsed=t0,MeaM, with the samet0,M value for all the
data points with the sameM value. The slopes of each of the
fits in Fig. 1 are approximately the same for thee,1 regime.
The same result occurs foreù1, though with another slope
value. These facts imply that there is a common

M-independent scaling exponenta for each regime. Follow-
ing the methodology of Ref.[12] we estimatea<−0.019 for
e,1 anda<−0.182 foreù1. Thus we can conclude that
the power-law scaling exponent undergoes a sudden change
at a threshold valueec<1.00, since the estimateda values
differ by one order of magnitude.

IV. PHASE-SPACE DYNAMICS

In Ref. [12] the change in the scaling behavior oft de-
picted in Fig. 1 was attributed to the change in the dynamical
behavior of the chain as the energy densitye goes from a
regime of low chaos to a regime of fully developed chaos.
However, it remains unexplained why the aforementioned
change occurs at a precise valueec of the energy density. To
address this problem we consider in more detail the dynami-
cal behavior of the FPU chain. As is known, the LLEl1sed is
a parameter that can be used to quantify the degree of chaos
in the dynamics of a given system with either low or large
number of degrees of freedom. For the homogeneous FPU
model[11] it is known that the behavior of the LLE for large
(small) values of the energy densitye is l1sed,es. The ex-
ponent s has a large value in the weakly chaotic regime
e,eT and a small value in the strongly chaotic regime
e.eT. That is, the exponents undergoes a sudden change
around the thresholdeT. This provides an operational defini-
tion of the SST, which is defined by a crossover in the scal-
ing behavior ofl1sed. Further analytical studies[13,14] of
the dependence of the LLE on the energy densitye in homo-
geneous FPU lattices confirm the conjecture that the LLE
reaches a finite,e dependent, value in the thermodynamic
limit N→`.

For the homogeneous FPU model we have numerically
computed the LLE by a standard technique[16] for chains
with N=300 000 andN=2000 unit mass oscillators, as
shown in Fig. 2. The results for these twoN values overlap
very well over the entire range of thee values studied with
the best available analytical estimate ofl1sed valid in the
thermodynamic limit[13]. Since our numerical data are in-
dependent of the approximations made in Ref.[13] to obtain
the analytical estimate, they provide an independent corrobo-
ration of the stability ofl1sed in the thermodynamic limit.
This result justifies the study of the dynamics of the FPU
chain with N values smaller than those needed to compute

FIG. 1. Relaxation timet vs energy densitye. The continuous
(dashed) lines correspond to the power-law fitea for the e,1se
ù1d regime and allM Þ1 values.
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the relaxation timet of the MACF of the heavy impurity.
Figure 3 shows the results for the MFPU model withN

=2000 unit mass oscillators. For all theM values considered
the scaling behavior ofl1 remains unaltered by the presence
of the heavy impurity embedded in the chain for the entiree
value range considered. This result indicates that the dynam-
ics of the system is dominated by the FPU chain, with no
contribution from the heavy impurity. A rough estimate of
the crossover energy density, which defines a common SST
eT for both the homogeneous FPU and MFPU models, can be
obtained from Fig. 3 by the intersection of the straight lines
that describe the low- and high-energy power-law asymptotic
behavior of l1sed. The crossover between the two power
laws occurs ateT<1.18. A straightforward observation is
that the computed SSTeT value, which is a distinctive char-
acteristic of the microscopic dynamics of the entire system,
is very close to the valueec<1.00 obtained from the cross-
over in the scaling behavior of the relaxation timet of the
MACF, which is a property of the heavy impurity. This result
suggests that the change in the scaling behavior oft exhibits
macroscopically the existence of the SSTeT.

To characterize chaos in more detail we compute the
Lyapunov spectrum(LS) of positive exponentshlij using a
standard method[17], as implemented in Ref.[18], for

chains ofN=100 unit mass oscillators and severalM values.
The results are presented in Fig. 4. The linear shape of the
LS has been previously obtained for the homogeneous FPU
model with e values much larger than the SSTeT [19]. We
see that the LS is unaltered by the heavy impurity; that is, the
LS is dominated by the positive Lyapunov exponents corre-
sponding to the FPU chain without the impurity. This type of
behavior has been reported for the case of a heavy tracer
particle in a two-dimensional molecular fluid, where the
tracer and fluid particles are hard disks undergoing elastic
collisions[20], but not for the case of a continuous potential,
like the one considered in this work.

Another useful quantity to characterize chaos is the
Kolmogorov-Sinai(KS) entropyhks which, for conservative
systems, can be written ashks=oli for all li ù0. The KS
entropy describes the mean information production rate
caused by all positive Lyapunov exponents along a trajectory
in phase space and therefore measures the degree of stochas-
ticity. Results for a chain withN=100 and twoM values are
reported in Fig. 5. We observe that the KS entropy, just as the
LLE, exhibits a change in its scaling behavior between two
different and well-defined regimes, characterized by the scal-
ing laws hks,e2.05 for e!1 and hks,e0.55 for e@1. The
crossover between both regimes occurs at an energy density
value e that is closer to the threshold valueec of the relax-
ation timet than the thresholdeT of the LLE. Thus the KS
entropy, just as the LLE, is a suitable quantity to probe the
dynamics in the considerede value range. A similar behavior

FIG. 2. Largest Lyapunov exponentl1 vs energy densitye for
the homogeneous FPU modelsM =1d. Asterisks correspond toN
=2000 and filled triangles toN=300 000. The continuous line is the
analytical estimate of Ref.[13].

FIG. 3. Largest Lyapunov exponentl1 vs energy densitye for
the MFPU model and allM values. References to power-law scal-
ings valid for small and largee values are shown by dashed lines.
Vertical dashed-dotted line indicates the approximate location ofeT.
Open symbols correspond toN=2000 and filled symbols toN
=300 000.

FIG. 4. Spectrum of Lyapunov exponents fore=26,N=100, and
all the consideredM Þ1 values.

FIG. 5. KS entropy vs energy density forN=100. Vertical
dashed-dotted line indicates the approximate crossover point be-
tween the regimes of weak and strong chaos, with dashed lines
indicating the asymptotic power laws valid fore!1 ande@1.
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in the KS entropy has been previously reported for the one-
dimensionalf4 model, with a threshold value of the energy
that separates two integrable limits of this system[21].

V. DISCUSSION

From a macroscopic, i.e., statistical, perspective it is not
at all clear what kind of collective mechanism, if any, could
be held responsible for the crossover valueec at which the
scaling exponenta changes its value. However, from a mi-
croscopic Hamiltonian perspective the change of the scaling
exponenta can be straightforwardly interpreted as a macro-
scopic manifestation of the chaotic transition described by
the SST. This interpretation arises by comparing Figs. 1 and
3, which suggest that the behavior oftMsed andl1sed is due
to the same mechanism. Since the microscopic dynamics of
the MFPU and FPU models are practically identical, we can
apply the same explanation of the origin of the chaotic tran-
sition that was previously given in context of the FPU model
[11]. The Hamiltonian of either the FPU or the MFPU model
can be written in the form

Hsu,I d = H0sI d + H1su,I d, m ;
iH1i
iH0i

! 1, s2d

wheresu ,I d are the action-angle canonically conjugated vari-
ables andi¯ i is a suitable norm. A consequence of the
perturbationH1 is that the resonant manifoldsn ·vsI d=0 of
H0 are destroyed for any smallm and are replaced by finite-
thickness chaotic layerssn is an integer component vector
and v is a vector whose components arevi =]H0/]I id. As
these chaotic surfaces intersect the constant energy hypersur-
face for N@1, a chaotic networksthe Arnold webd is pro-
duced which is everywhere dense in phase space. Ate.ec
the resonances are strongly overlapped and microscopic dif-
fusion is allowed in every direction in phase space, with a
large value of the LLE. In this dynamical regime the scaling
exponenta has also a large value, which produces a rapid
decay in the value of the relaxation timet of the MACF of
the heavy impurity. On the contrary, ate,ec, the resonance
overlapping is drastically reduced as the energy density de-
creases, diffusion in phase space occurs only along reso-
nances, and the LLE takes a smaller value. Correspondingly,
the scaling exponenta is smaller, which accounts for the
almost constant value of the relaxation timet in this e value
range. The behavior of the relaxation timetsed has a direct
relationship with diffusion in configuration space, sincetsed
is directly related to the self-diffusion coefficient of the
heavy impurity through the Green-Kubo relationf12g.

Although it is not our aim to directly address the problem
of the origin of diffusion in many-particle Hamiltonian sys-
tems, a discussion will clarify some of our results. Recently
a class of one-dimensional maps has been reported which
present normal diffusivelike behavior in the absence of chaos
[22]. For the case of the MFPU model the diffusion coeffi-
cient of the heavy impurity obeys a unique power lawD
,e0.964 in the entire range ofe values considered[12]. From
these results it is clear that macroscopic diffusion is a com-
bined result of the large number of degrees of freedom, the

mass of the heavy impurity[23], and the random initial con-
ditions, rather than of the degree of chaos in the system.
However, although diffusion itself is a collective phenom-
enon and, therefore, largely independent of the microscopic
dynamics, some of itsspecificfeatures, such as the crossover
in the scaling behavior oft, can yield information on the
dynamics of the system to which the heavy impurity is
coupled, which in the case of the FPU chain studied here is
the transition from weak to a strongly chaotic regime. Nev-
ertheless, in order to consider the heavy impurity as an ef-
fective probe of the Hamiltonian dynamics we have to study
a suitable macroscopic variable, which in our case is the
relaxation timet, which is computed from the momentum or
velocity of the heavy impurity.

Finally we would want to remark some implications of
the behavior of the KS entropyhks. Althought is a property
computed from the momentum of the heavy impurity,
whereas the KS entropy is essentially a property computed
from the full dynamics of the FPU chain, both quantities
provide information about the microscopic dynamics. In fact,
both reflect the chaotic transition at the SSTeT, as shown in
Figs. 3 and 5. The important point to be stressed is that the
KS entropy is a property that can be computed by other
methods, such as time-series analysis[24]. Recent theoretical
work suggests that the information extracted from the time
series of the position of a Brownian particle is unable to
unambiguously determine the nature(either regular, chaotic,
or stochastic) of the system to which the particle is coupled
[25]. This result is entirely consistent with the lack of any
signature of the chaotic transition associated with the SST in
the behavior of the self-diffusion coefficient as a function of
e in the case of our MFPU model[12]. In Ref. [25] the KS
entropy of an impurity in a harmonic crystal, which corre-
sponds to our MFPU model fore!1, was computed using
the time-series of the position of the impurity. However, if
the KS entropy is computed using the full dynamics of the
system, as was done in the present paper for the case of the
MFPU model, it can indeed detect the stochasticity transi-
tion, as is evident by inspecting Fig. 5. By comparing Figs. 3
and 5 it can be inferred thatl1 and hks convey almost the
same information, which in turn is reflected in the behavior
of the relaxation timetsed as depicted in Fig. 1. Now,tsed is
computed from the MACF, which is a property that depends
only on the momentum of the impurity. This observation
suggests that, if the momentum time series, instead of the
position time series, is used to compute the KS entropy by
methods of time-series analysis, the stochasticity transition
associated with the SST of the FPU model could indeed be
detected. We stress that we are not implying that methods
based on time-series analysis can detect chaos in a generic
dynamical system. Even for one-dimensional systems, this
possibility remains controversial[25]. The dynamics of
three-dimensional systems or those with long-range interac-
tions is still not well characterized, which poses an obstacle
when trying to define which specific features of the micro-
scopic dynamics of these type of systems could be detected
at a macroscopic level. But, for the particular case of the
MFPU model, it can be conjectured that the KS entropy,
when computed from the momentum time series, would dis-
play a different behavior at smalle values compared to the
corresponding behavior at largee values.
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VI. CONCLUSIONS

In this work we have presented evidence, obtained from a
systematic study of certain dynamical parameters, that the
inclusion of a heavy defect in a FPU chain does not affect its
Hamiltonian dynamics. Furthermore, the crossover in the
scaling behavior of both the LLE and the KS entropy, which
depend on the dynamics of the whole system, has a macrosp-
copic manifestation in a similar behavior of the relaxation
time t of the MACF of the heavy impurity alone. An inter-
esting development in this direction would be to explore the
possibility that certain dynamical features could be detected
in more complicated systems by monitoring the appropriate

variables. Another open problem is to investigate if this tran-
sition between two diferent dynamical regimes can be de-
tected by other methods, such as those provied by nonlinear
time-series analysis.
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